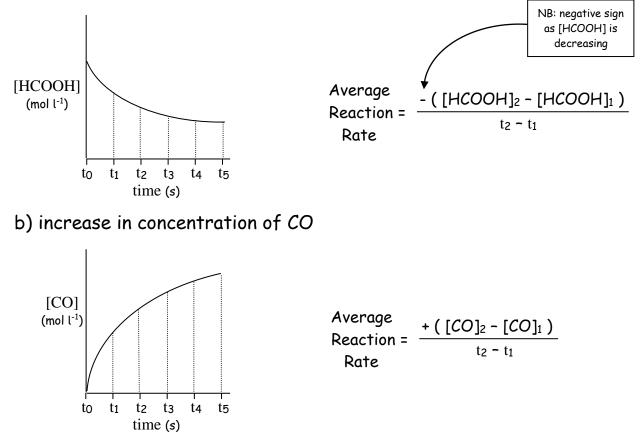
1.6 Kinetics

Kinetics is the study of the speed of chemical reactions

- Factors affecting the rate of reaction include
 - Temperature
 - Concentration of reactants
 - Particle size/surface area
 - Presence of a catalyst
- Activation energy must be overcome to react
- Activated complex formed as reaction proceeds.


Reaction kinetics gives information on the pathways of a chemical reaction

- Relates to the effect of the concentration on the reaction rate
- Rate is usually expressed as the change of concentration per unit time
- Rate is independent of the size of the reaction sample analysed.

For example:	нсоон ——	→ CO +	H ₂ O

Rate can be determined by following:

a) decrease in the concentration of HCOOH

In both graphs, reaction rate decreases as the reaction proceeds.

- Reaction rate decreases as gradient of line approaches zero (horizontal)
- The shorter the time interval, the more accurate the measurement of instantaneous rate
- As Δt approaches zero, it becomes dt

Instanteous Reaction = $\frac{-d [HCOOH]}{dt}$ or $\frac{1 \text{Instanteous}}{\text{Reaction}} = \frac{d [CO]}{dt}$ Rate

The rate, at particular time t, is given by the gradient of the tangent to the curve at time t.

- At t=0, rate has its maximum value
- It is usual to determine initial rate of reaction and use this value to determine other kinetic values

2.9.1 Reaction Rates and Concentration

Consider the following reaction:

A + B ----- products

• Rate of forward reaction depends on [A] & [B] at that particular time.

The Rate Law

Rate α [A][B] Rate = k[A]ⁿ[B]^m

Where k is the rate constant. n is the order of the reaction with respect to A m is the order of the reaction with respect to B

	Rate Law Equation	Order of Reaction
The overall order of the	rate α [A] ⁰	0
reaction is the sum of the	rate α [A] ¹	1
powers of the concentrations	rate α [A] ²	2
(i.e. n+m)	rate α [A] ¹ [B] ¹	2
	rate α [A] ¹ [B] ²	3

Values of order of reaction (n+m) refer to actual numbers of particles involved in a single step controlling the overall rate of reaction.

- The controlling rate step is called the rate determining step.
- These values are **not** the stoichiometric coefficients from a balanced chemical equation (i.e. not the numbers in front of the chemical formulae)

e.g. $H_2O_2 + 2HI \longrightarrow 2H_2O + I_2$

rate α [H₂O₂][HI] (discovered by experiment)

order of reaction = 2 despite there being 3 reactant molecules

Determining the Rate Constants & Order of Reaction

- Rate constant determined by series of experiments
 - Initial concentration of reactants are changed between experiments

Example 1: Calculate the rate constant and the order of each reactant

For the reaction:

$$A + B + C \longrightarrow D$$

|--|

Experiment	[A] / mol l ⁻¹	[B] / mol l ⁻¹	[C] / mol l ⁻¹	Initial rate of D formed / mol l ⁻¹ s ⁻¹
1	1.0	1.0	1.0	2.0
2	2.0	1.0	1.0	4.0
3	1.0	2.0	1.0	2.0
4	1.0	1.0	2.0	8.0

Analysis of Results

Experiments Compared	Change in Conditions	Effect of Change on Rate	Order of Reactant
1+2	[A] x2	rate x2	[A] ¹
1+3	[B] x2	no change in rate	[B] ⁰
1+4	[C] ×2	rate x4	[<i>C</i>] ²

Conclusions

- Rate α [A]¹ [B]⁰ [C]²
- : Rate α [A] [C]²
- Reaction is 1st Order with respect to [A]
 - Zero Order with respect to [B]
 - 2nd Order with respect to [C]

Overall Order = 1 + 0 + 2 = 3

To calculate the rate constant, substitute in values from experiment 1:

Rate = k [A] [C]²
2.0 = k × [1.0] × [1.0]²
k =
$$\frac{2.0 \text{ mol } l^{-1} s^{-1}}{1 \times 1^2 \text{ mol}^3 l^{-3}}$$

= 2.0 l² mol⁻² s⁻¹

Example 2: Calculate the rate constant and the order of both reactantsFor the reaction: $2NO + O_2 \longrightarrow 2NO_2$

Results of Experiments:

Experiment	Initial Concentration/ mol l ⁻¹		Initial rate of NO2 formed
Experiment	[NO]	[O ₂]	/ mol l ⁻¹ s ⁻¹
1	2.0 ×10 ⁻⁵	4.0 ×10 ⁻⁵	1.4 ×10 ⁻¹⁰
2	2.0 ×10 ⁻⁵	8.0 x10 ⁻⁵	2.8 ×10 ⁻¹⁰
3	4.0 ×10 ⁻⁵	4.0 ×10 ⁻⁵	5.6 ×10 ⁻¹⁰

Analysis of Results

Experiments Compared	Change in Conditions	Effect of Change on Rate	Order of Reactant
1+2	[O ₂] x2	rate x2	$[O_2]^1$
1+3	[NO] x2	rate x4	[NO] ²

Conclusions: Rate α [NO]² [O₂] \therefore overall order = 2+1 = 3

Reaction is 1^{st} Order with respect to [NO] & 2^{nd} Order with respect to $[O_2]$

Rate = k ×
$$[NO]^2$$
 × $[O_2]$
1.4 ×10⁻¹⁰ = k × $[2.0 \times 10^{-5}]^2$ × $[4.0 \times 10^{-5}]$
k = $\frac{1.4 \times 10^{-10}}{[2.0 \times 10^{-5}]^2 \times [4.0 \times 10^{-5}] \text{ mol}^3 \text{ L}^3}$
= 8.75×10³ l² mol⁻² s⁻¹

2.9.2 Kinetics and Reaction Mechanism

Chemical kinetics can follow the *bottle-neck* principle

• A large crowd leaving a car park after a concert can take a long time to leave as they have to queue to exit the car park though a narrow exit.

Chemical reactions proceed in a series of sequential stages

- Overall rate of reaction determined by the slowest step
- Slowest step is called the rate determining step
- Experimentally determined rate equations and order of reactions can give information about the mechanism of the reaction

Example 1: $H_2O_2 + 2HI \longrightarrow 2H_2O + I_2$ Rate = k [H_2O_2] [HI](order of both reactants =1)

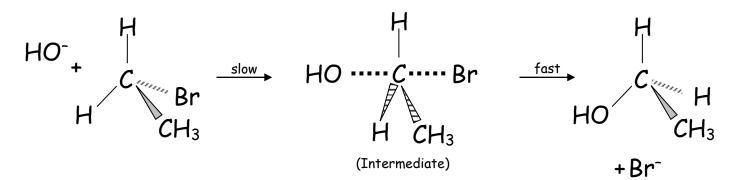
- Rate controlled by a step where one molecule of H_2O_2 reacts with one molecule of HI
- Step 1 $H_2O_2 + HI \longrightarrow X$ (slow: Rate Determining Step)
- Step 2 $X + HI \longrightarrow product (faster step)$

where X is an intermediate formed during the reaction

- Kinetics of reaction give no direct information about the nature of the intermediate chemical X or the total number of steps involved
- Further information is deduced by other means, for example spectroscopy

Actual Mechanism:

- $H_2O_2 + HI \longrightarrow H_2O + HOI$
- HOI + HI \longrightarrow H₂O + I₂


Where HOI is an intermediate formed with a transient lifetime.

Example 2: Hydrolysis of a primary halogenalkane

 $CH_3CH_2Br + OH^- \longrightarrow CH_3CH_2OH + Br^-$

Rate = $k [CH_3CH_2Br] [OH^-]$

- both reactants are 1st order reactants
- both reactants are involved in the rate determining step
 - $\circ\;$ rate determining step is in fact the only step in this reaction mechanism
 - OH⁻ ion attacks the back of the molecule to displace the bromine atom to form a bromide Br⁻ ion.
 - $\circ~$ This mechanism is known as a S_N2 process in Unit 3

Example 3: Hydrolysis of a Tertiary Halogenalkane

 $(CH_3)_3CBr + OH^- \longrightarrow (CH_3)_3COH + Br^-$

rate = k [(CH₃)₃CBr]

 \therefore [(CH₃)₃CBr] is 1st order, [OH⁻] is zero order

• Rate determining step does not involve the OH⁻ ion

 $\begin{array}{cccc} (CH_3)_3CBr & \longrightarrow & X^+ + Br^- & (slow step) \\ X^+ + OH^- & \longrightarrow & (CH_3)_3COH & (fast step) \end{array}$

where X is the $(CH_3)_3C^+$ ion - the carbo cation

Questions:

1. Bromide ions and bromate ions react in acid solution to give bromine according to the equation:

$$6H^+ + 5 Br^- + BrO_3^- \longrightarrow 3Br_2 + 3H_2O$$

Rate measurements on four different reaction mixtures gave the following data:

Experiment	[H⁺]	[Br⁻]	[BrO₃⁻]	Relative rate
Experiment	/mol l ⁻¹	/mol l ⁻¹	/mol l ⁻¹	/ mol l ⁻¹ s ⁻¹
1	0.45	0.375	0.075	1
2	0.45	0.75	0.075	2
3	0.9	0.375	0.075	4
4	0.45	0.375	0.15	4

- a) What is the rate expression for the reaction?
- b) What is the order of the reaction with respect to each of the reactants?
- c) What is the overall order of the reaction?
- d) Explain why the rate equation and the overall equation are different.
- 2. The reaction rates for the following reaction at various starting concentrations are given in the table below:

 $2N_2O_5 \longrightarrow 4NO_2^- + O_2$

[N ₂ O ₅] (mol l ⁻¹)	Rate (mol l ⁻¹ s ⁻¹)
2.20	2.25 x10⁻⁵
2.00	2.10 x10 ⁻⁵
1.52	1.58 x10 ⁻⁵
0.93	0.96 x10 ⁻⁵

a) Draw a graph of the rate against $[N_2O_5]$

b) Calculate the value of the rate constant.